VISUALISATION OF COMPLEXITY AND RISK IN MEGA CONSTRUCTION PROJECTS

Erol, H., Dikmen, I., Atasoy Özcan, G., Birgönül, M.T.

Construction Management and Engineering Division
Civil Engineering Department

Middle East Technical University, Ankara, Turkey
PROJECT BACKGROUND

• **Project Name:** Development of a Computer-Based Tool For Visualization of Complexity in Mega Construction Projects

• Funded by: “The Scientific and Technological Research Council of Turkey”

• Total budget of € 75,000

• **36 months** duration
INTRODUCTION AND PROBLEM STATEMENT

- Construction projects have characteristic problems:
 - Time and cost limitations
 - Physical constraints
 - Ambiguity in scope
 - Multitude of stakeholders
 - Communication issues
INTRODUCTION AND PROBLEM STATEMENT

• For 9 high-speed train line projects selected from mega-projects in the European Union,
 → Cost deviations range from 8% to 116% (Boateng, et al. 2015)

• 7 sample mega projects conducted in Korea,
 → Have average cost increase of $ 2.9 billion
 → Have average time extension of 3.6 years (Han, et al. 2009)
RESEARCH OBJECTIVE

- Develop a method to visualise risk and complexity in mega construction projects.
MEGA PROJECTS

<table>
<thead>
<tr>
<th>Cost Threshold</th>
<th>Budget-GDP Ratio Threshold</th>
<th>Duration Threshold</th>
<th>Reference Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 billion</td>
<td>-</td>
<td>Several years</td>
<td>Beehler (2009)</td>
</tr>
<tr>
<td>0.3-20 billion</td>
<td>% 0.01</td>
<td>Construction: 5-12 years, Operation: 7-30 years</td>
<td>Eweje et al. (2012)</td>
</tr>
<tr>
<td>1 billion</td>
<td>-</td>
<td>5 years</td>
<td>Han et al. (2009)</td>
</tr>
<tr>
<td>1 billion</td>
<td>-</td>
<td></td>
<td>Flyvbjerg et al. (2003), Capka (2004), Marrewijk et al. (2008), Kim (2010)</td>
</tr>
<tr>
<td>1 billion (United States)</td>
<td>% 0.01</td>
<td></td>
<td>Hu et al. (2015)</td>
</tr>
<tr>
<td>€0.133 billion (EU Countries)</td>
<td>% 0.02</td>
<td></td>
<td>Hu et al. (2015)</td>
</tr>
<tr>
<td>0.5 billion</td>
<td>-</td>
<td></td>
<td>Flyvbjerg (2009)</td>
</tr>
</tbody>
</table>
RESEARCH PLAN - STEP 1

INPUTS
- Questions based on the literature findings
- Conceptual model

STEPS
- Interviews with Mega Project Stakeholders
RESEARCH PLAN - CASE STUDY PROJECTS

<table>
<thead>
<tr>
<th>Project</th>
<th>Estimated Cost</th>
<th>Project Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Istanbul 3rd Airport</td>
<td>EUR 22 Billion</td>
<td>Under the construction</td>
</tr>
<tr>
<td>Akkuyu Nuclear Power Plant</td>
<td>USD 20 Billion</td>
<td>Initiation stage</td>
</tr>
<tr>
<td>Istanbul-Izmir Highway</td>
<td>USD 16 Billion</td>
<td>Under the construction</td>
</tr>
<tr>
<td>Trans-Anatolian Pipeline (TANAP)</td>
<td>USD 12 Billion</td>
<td>Under the construction</td>
</tr>
<tr>
<td>Marmaray Railway</td>
<td>USD 5 Billion</td>
<td>Completed</td>
</tr>
<tr>
<td>Ankara-Izmir High Speed Train</td>
<td>USD 4.2 Billion</td>
<td>Under the construction</td>
</tr>
<tr>
<td>Eurasia Tunnel</td>
<td>USD 1.3 Billion</td>
<td>Completed</td>
</tr>
<tr>
<td>Ankara Etlik Integrated Healthcare Campus</td>
<td>USD 1.2 Billion</td>
<td>Under the construction</td>
</tr>
</tbody>
</table>
RESEARCH PLAN - CONCEPTUAL MODEL
RESEARCH PLAN - STEP 2

INPUTS
- Questions based on the literature findings
- Conceptual model
- Interview data

STEPS
- Interviews with Mega Project Stakeholders
- Development of a Conceptual Map
RESEARCH PLAN - STEP 3

INPUTS

- Questions based on the literature findings
- Conceptual model
- Interview data
- Options for visualisation techniques

STEPS

- Interviews with Mega Project Stakeholders
- Development of a Conceptual Map
- Focus Group Study
RESEARCH PLAN - STEP 4

INPUTS
- Questions based on the literature findings
- Conceptual model
- Interview data
- Options for visualisation techniques
- Needs analysis

STEPS
- Interviews with Mega Project Stakeholders
- Development of a Conceptual Map
- Focus Group Study
- Development of a Visualisation Tool
COMPUTER TOOL

- The tool will use the visualization technique(s) determined in focus group meetings to reflect the effects of changes in complexity levels on project performance.

- Users can perform scenario analysis by changing threshold values of complexity factors.

- Tool can be utilised for trend analysis by recording the performance at different stages of the project.
CONCLUSIONS

• This study is expected to help mega project practitioners:

 ➢ to understand propagation behaviour of risk-related events,

 ➢ to enhance the decision-making,

 ➢ to improve the risk communication between the stakeholders.
QUESTIONS AND COMMENTS

THANK YOU FOR YOUR KIND ATTENTION

For your further questions: herol@metu.edu.tr